

5. Inorganic semiconductors

5.1 Crystalline materials (band structure)

Last week:

Opaque systems and powders

- Reminder on specular reflection, why scattering media behave differently
- Absorption/reflection by scattering media
- Measuring absorption spectra for powders and (some) films

Thin films

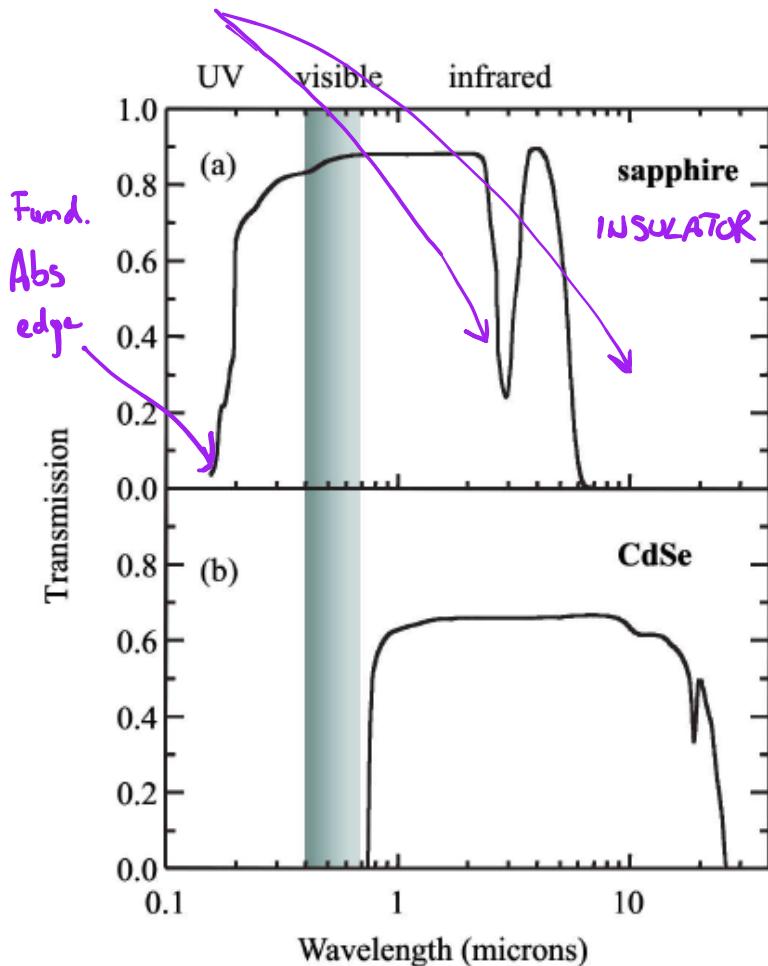
- How to measure optical constants of films: ellipsometry
- Basic principles and experimental setup
- Ellipsometry versus conventional absorption measurements
- Data analysis

Topics of this lecture:

- Optical properties of semiconductors vs. insulators and metals
- Reminder on band structure
- Light absorption: direct vs indirect semiconductors
- Excitonic effects
- Luminescence: direct vs indirect semiconductors

Crystalline insulators and semiconductors

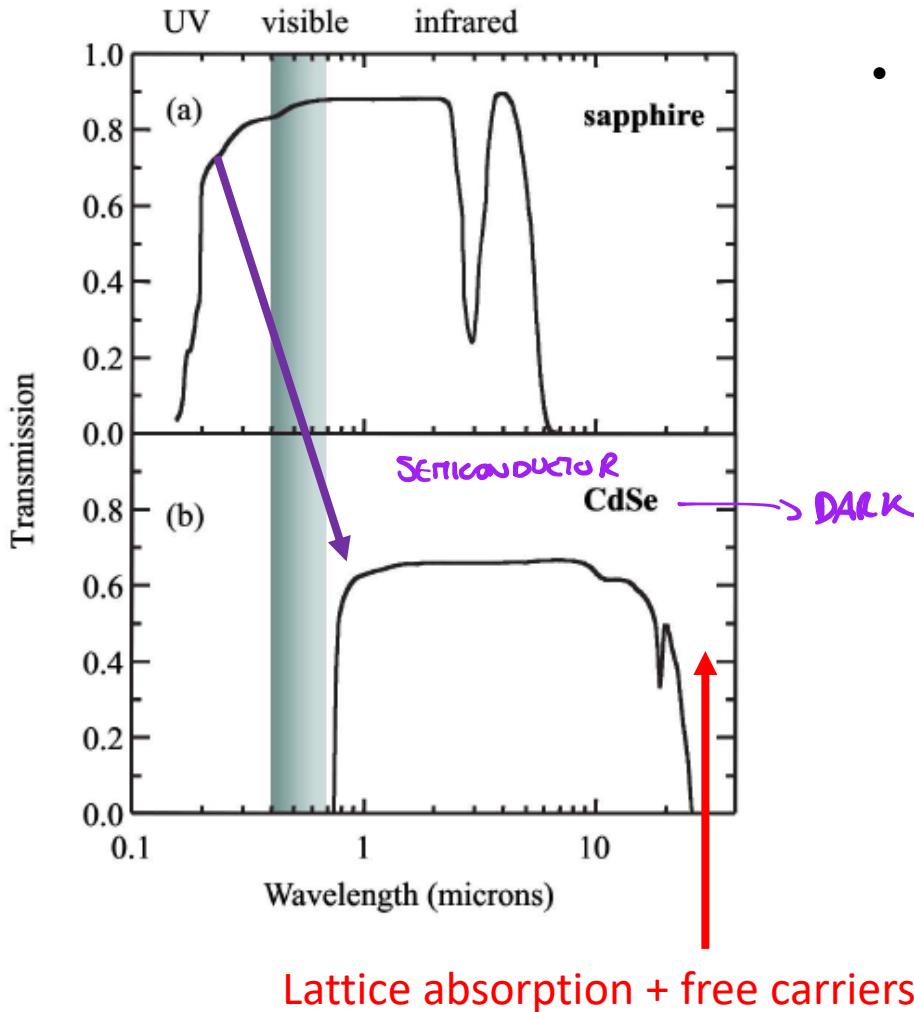
Vib. absorption \rightarrow phonon modes



Crystalline sapphire (Al_2O_3)

- Within the transparency range the absorption coefficient is very small, and refractive index may be taken to be real with no imaginary component
- Dip in transmission in μm range caused by vibrational absorption, analogous to IR absorption due to vibrations in polar molecules
- Vibrational excitations of a crystal lattice are called **phonon modes**
- Vibrational absorption in a solid is usually called phonon absorption or lattice absorption
- Transmission drops sharply in UV region for $\lambda < 0.2 \mu\text{m}$ due to absorption by bound electrons: **Fundamental absorption edge**

Crystalline insulators and semiconductors



Cadmium selenide

- Transparency range lies outside the visible spectrum!
- No visible light is transmitted through the crystal, it has a dark metallic appearance

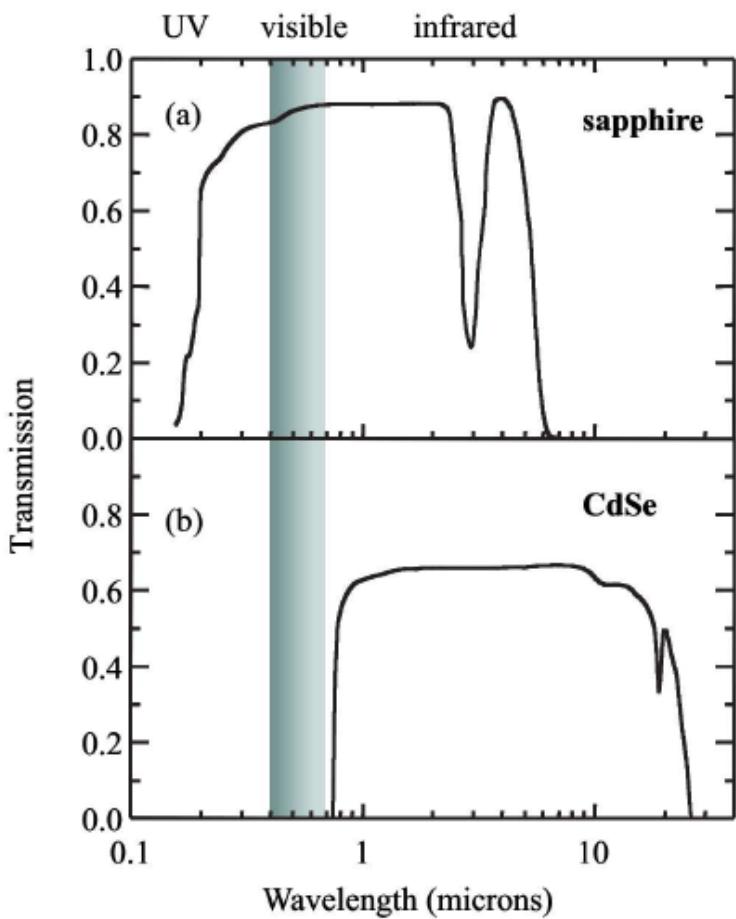
Table 1.2 Approximate transparency range, band gap wavelength λ_g , and refractive index n of a number of common semiconductors. n is measured at 10 μm . Data from Driscoll & Vaughan (1978), Kaye & Laby (1986), and Madelung (1996).

$$\vec{P} = \epsilon_0 \chi \vec{E} = \epsilon_0 (\tilde{\epsilon} - 1) \vec{E}$$

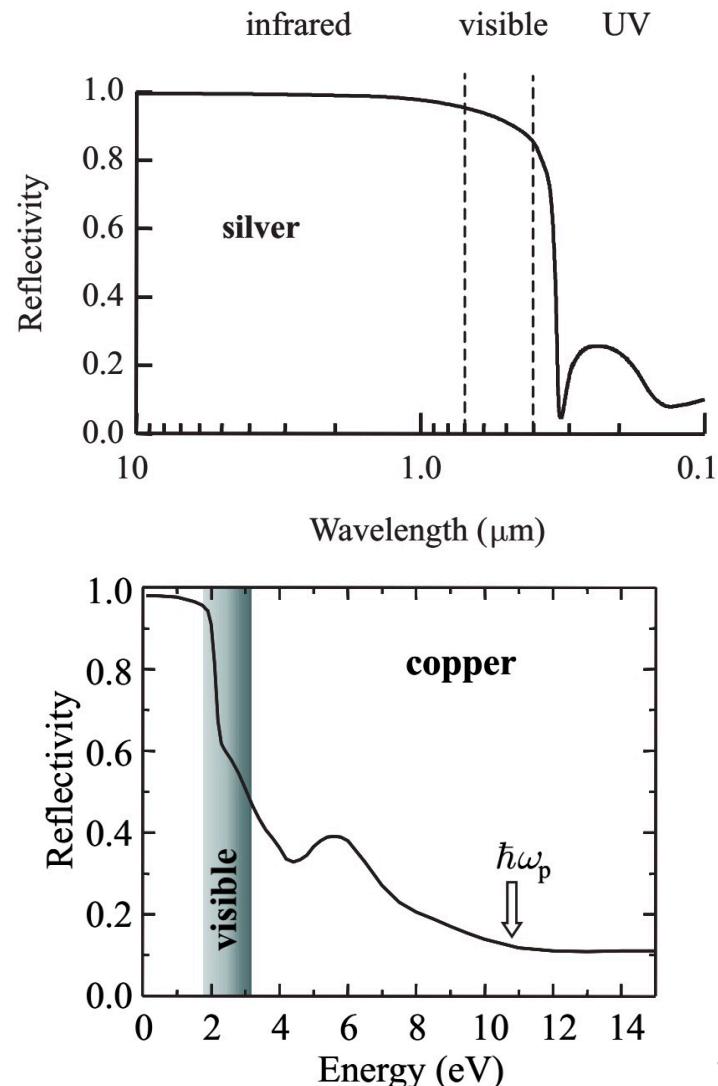
Crystal	Range (μm)	λ_g (μm)	n
Ge	1.8 – 23	1.8	4.00
Si	1.2 – 15	1.1	3.42
GaAs	1.0 – 20	0.87	3.16
CdTe	0.9 – 14	0.83	2.67
CdSe	0.75 – 24	0.71	2.50
ZnSe	0.45 – 20	0.44	2.41
ZnS	0.4 – 14	0.33	2.20

Insulators and semiconductors vs. metals

Color mostly defined by transparency window



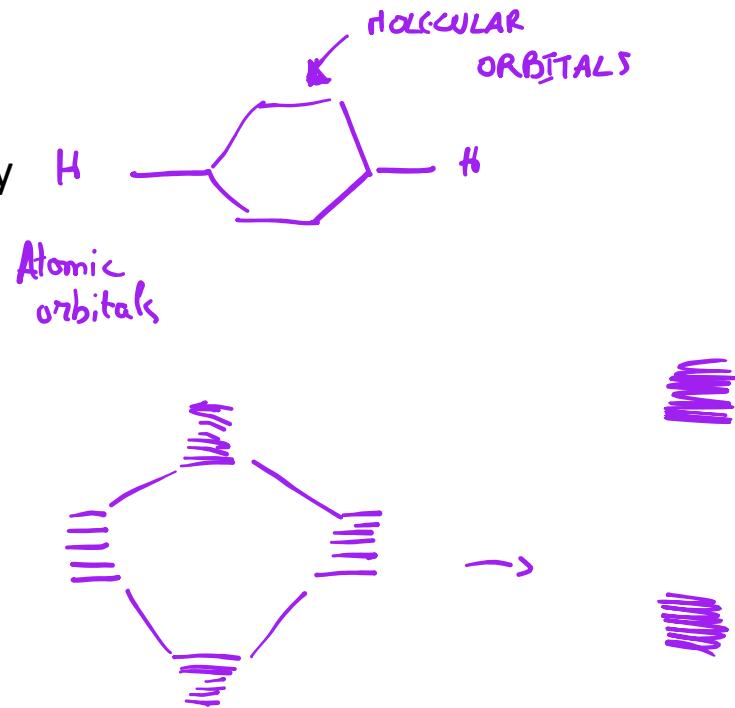
Color mostly defined by high reflectivity and interband electronic transitions (ex: gold and copper when polished)



Electronic bands

Atoms in a solid are packed very close to each other, with interatomic separation approximately equal to the size of the atoms

- Outer atomic orbitals overlap and interact strongly with each other
- Energy levels split, yielding many new orbitals
- The difference in energy between them becomes very small, so the levels may be considered as forming continuous bands of energy = broadens the discrete levels of the free atoms into **bands**
- The electron states within the bands are **delocalized**
- Some intervals of energy contain no orbitals = **band gaps**



Electronic bands

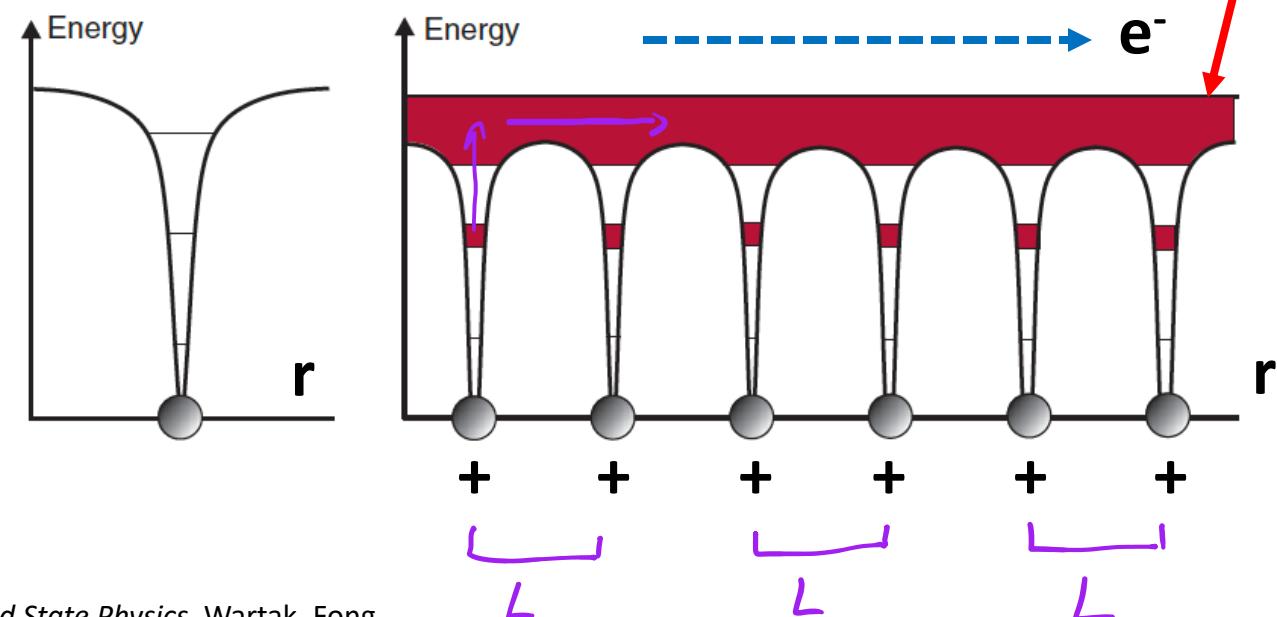
- In a unidimensional approximation, electrons in a solid experience a periodic potential due to the positively charged atomic nuclei of the crystal lattice
- This situation is further simplified by considering equidistant potential wells of constant depth

e^- of mass m (mass of the free electron)

L = distance between nuclei

Kronig–Penney Model

DELOCALIZATION



Electronic bands

- The mathematical treatment of the SC band structure is given by the Bloch's theorem
- The Coulomb potential in a crystalline solid is **periodic** and the wave functions of electrons inside a crystal are modulated by this periodic potential

Modulated plane wave:

$$\psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r}) \cdot \exp(i\mathbf{k} \cdot \mathbf{r})$$

Function with periodicity of the lattice

Plane wave with wavevector \mathbf{k}

$$\mathbf{k} = \frac{m\pi}{L} \quad \text{Change in phase per unit length } L$$

This is a solution to Schrödinger's equation $\hat{H}\psi = E\psi$

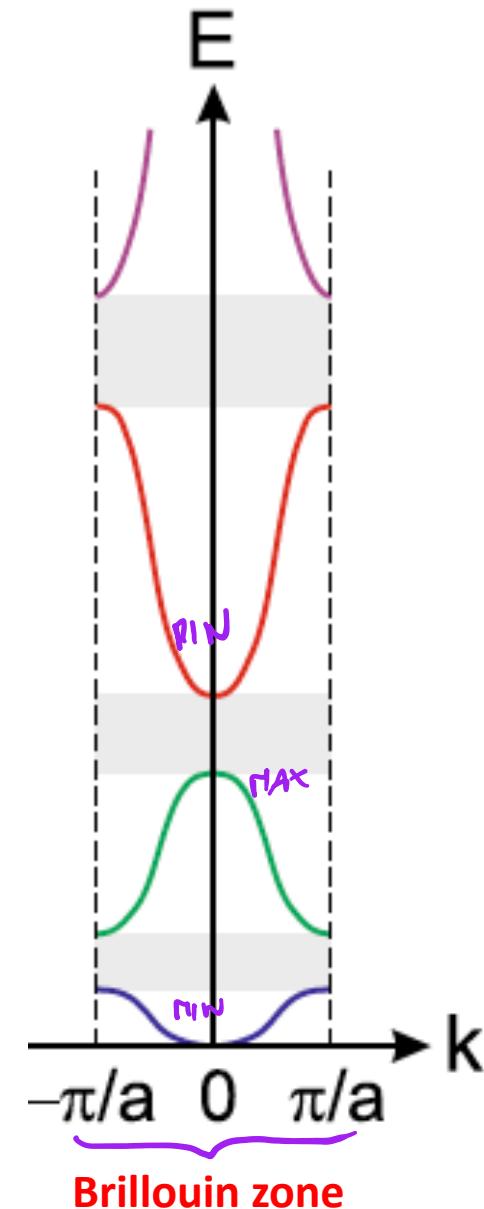
$$\text{with } E = \frac{1}{2}mv^2 = \frac{1}{2}\frac{\mathbf{p}_{\text{crystal}}^2}{m} = \frac{\hbar^2}{8\pi^2m} \mathbf{k}^2 = \frac{\hbar^2}{8mL^2} n^2 \quad \text{and } \mathbf{k} = \frac{n\pi}{L}$$

Note: Electrons in a crystal lattice have a momentum. It is defined by the associated wave vectors \mathbf{k} of this lattice, according to $\mathbf{p}_{\text{crystal}} \equiv \hbar\mathbf{k}$

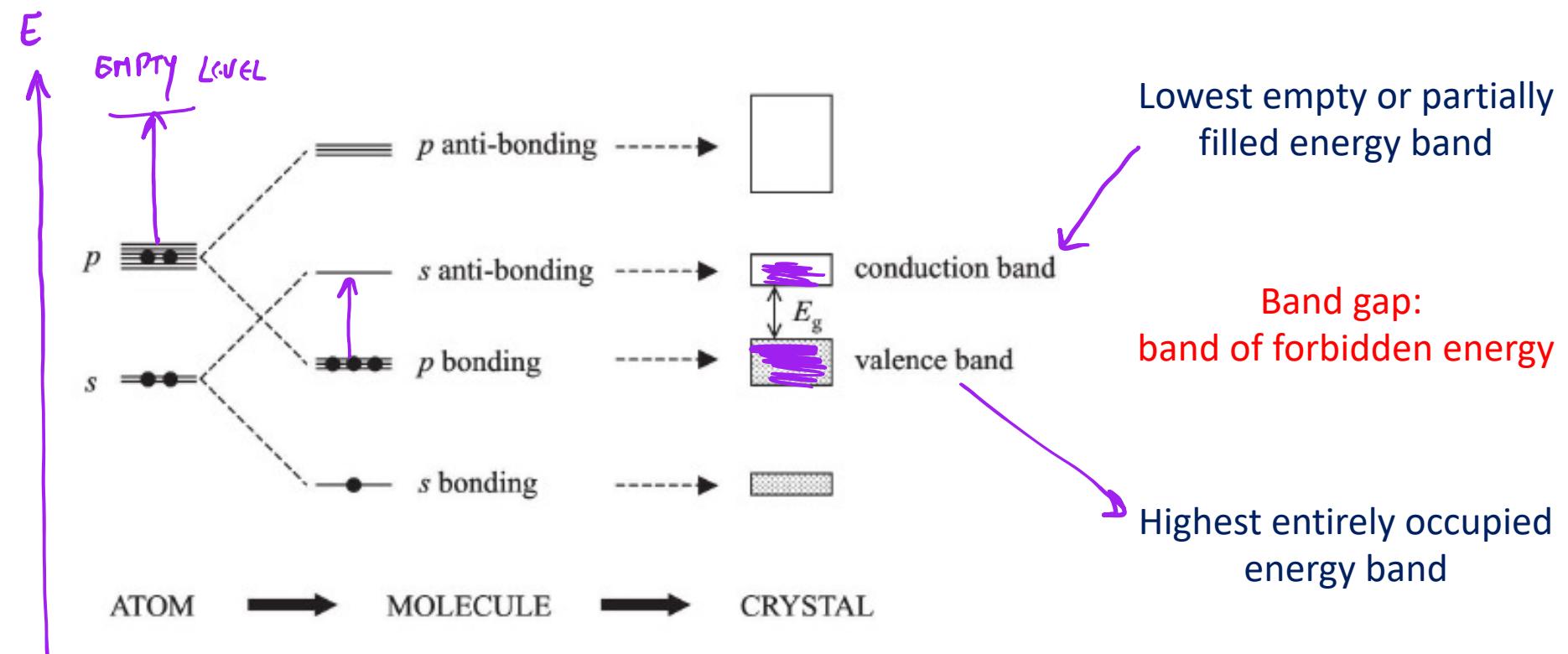
Crystal band structure

- Map of energy E against wavevector \hbar :
 $E(\hbar)$ = crystal band structure
- Gives the band gap and the Brillouin zones
- A Brillouin zone is the volume of \hbar - space containing all the values of \hbar up to π/a
 $(a =$ lattice constant in one dimension)
- $E(\hbar)$ reaches a maximum or a minimum within the Brillouin zone
- Bands appear parabolic due to $E = \frac{\hbar^2}{8\pi^2 m} \hbar^2$

Note: This relationship is derived for **free electrons**.
In order to provide a good fit one should use the effective mass of the electron (or hole)

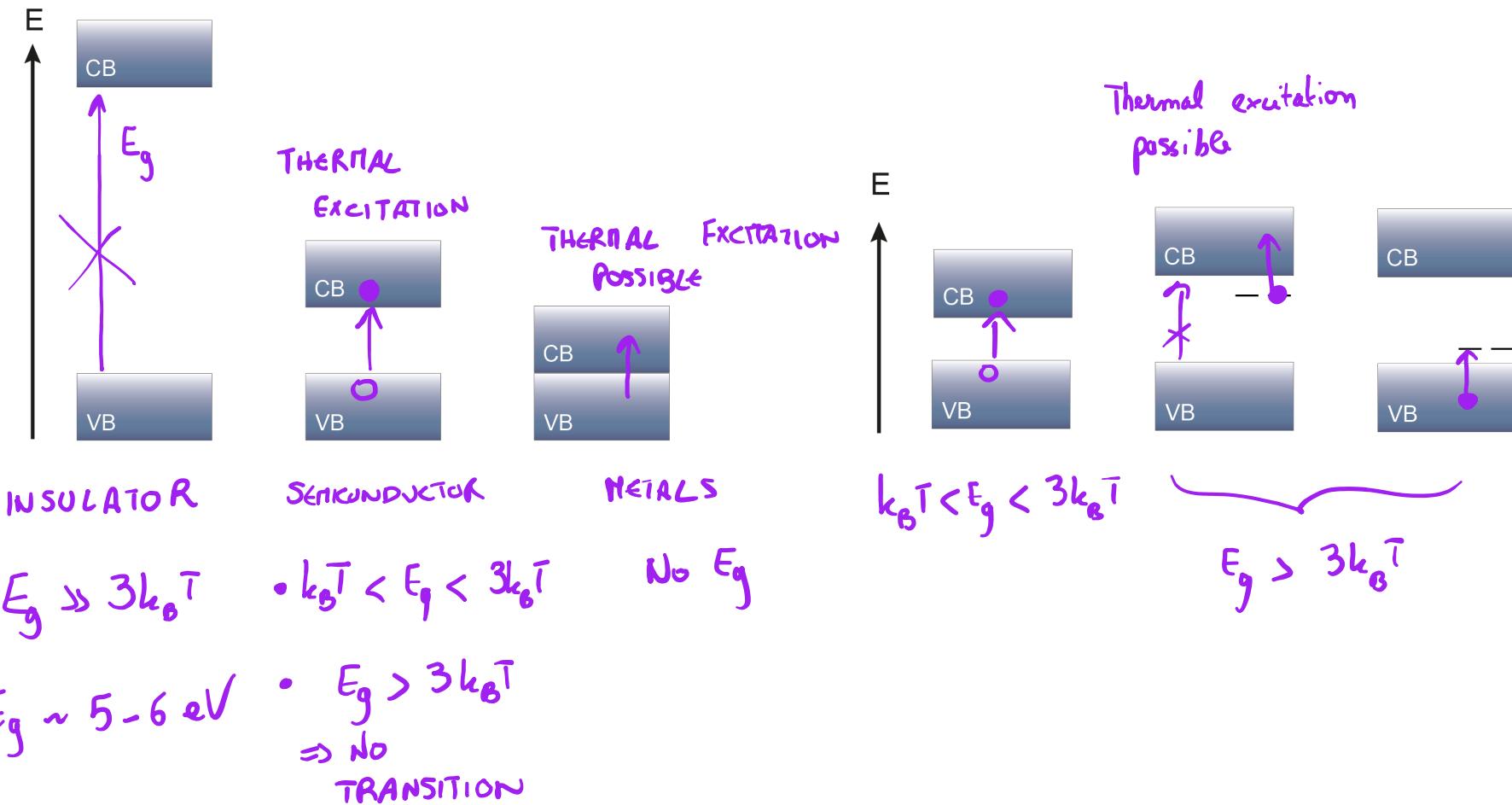


Transitions



Electric conduction in solids

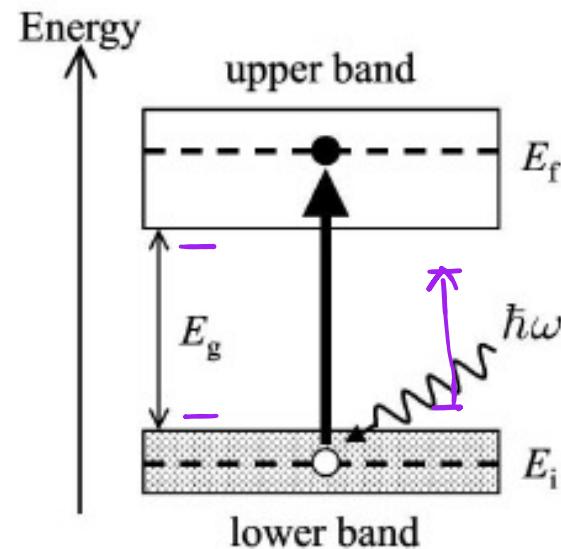
$$k_B T \sim 25 \text{ meV}$$



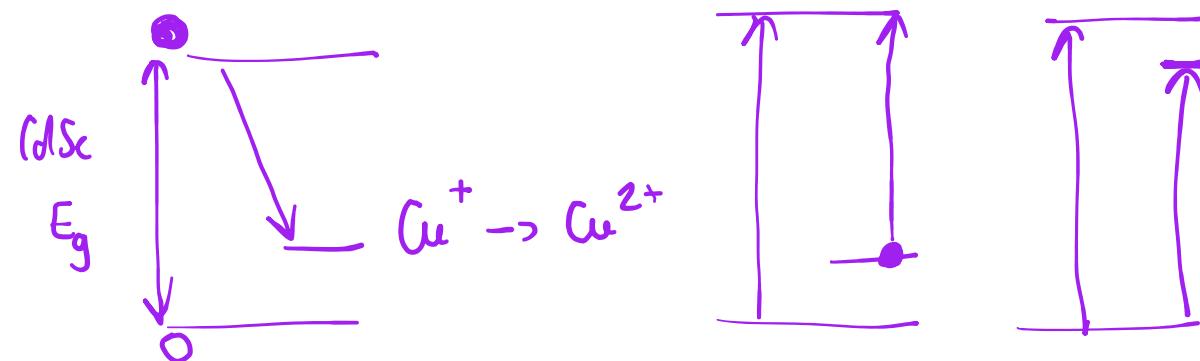
So far we have not provided anything else than thermal energy.
 What happens when there is energy from an electromagnetic wave?

Optical transitions

- Optical transitions can occur between the electronic bands if they are allowed by the selection rules
- This 'interband' absorption is possible over a continuous range of photon energies determined by the lower and upper energy limits of the bands (\neq free atoms)
- Absorption edge is caused by the onset of optical transitions across the fundamental band gap of the material
- Opposite process = interband luminescence



The photo-conduction of the semiconductor under band-gap irradiation is due to both e_{cb}^- and h_{vb}^+



Optical transitions

Energy conservation: $E_f = E_i + \hbar\omega$
↓ light

Momentum conservation: $\hbar\mathbf{k}_f = \hbar\mathbf{k}_i + \hbar\mathbf{k}_{\text{photon}}$

But... The wave vector of a photon is very small...

What does this imply??

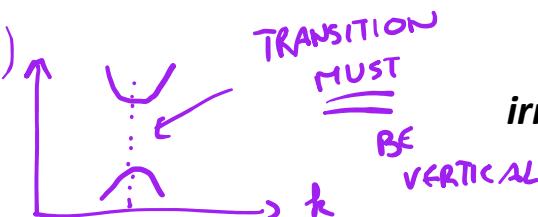
$$\hbar\mathbf{k}_{\text{photon}} = \frac{q\pi}{\lambda}$$

$$\hbar\mathbf{k}_{\text{electron (lattice)}} = \frac{m\pi}{L}$$

$$L \ll \lambda_{\text{visible}}$$

$$\hbar\mathbf{k}_{\text{photon}} \ll \hbar\mathbf{k}_{\text{electron}}$$

$$\Rightarrow \hbar\mathbf{k}_f = \hbar\mathbf{k}_i$$



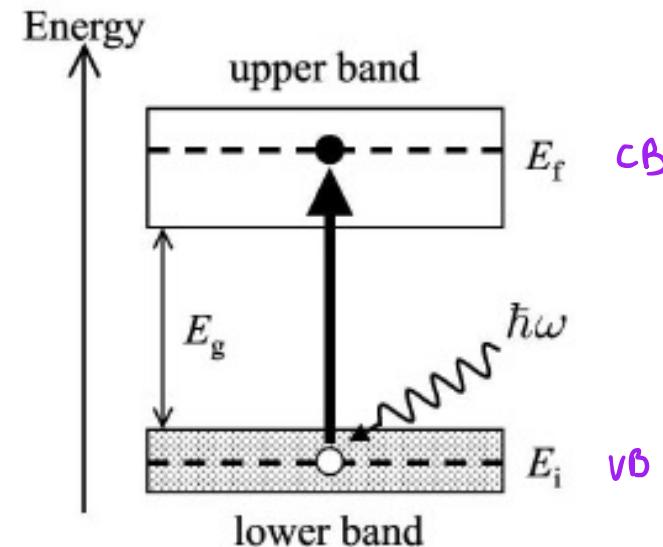
Example of optical transition:

TiO₂ is a solid with ionic character, we can see it as constituted of Ti⁴⁺ ions and O²⁻ ions

Ti: 3d² 4s² → Ti⁴⁺ : 3d⁰ → empty conduction band

O: 2p⁴ → O²⁻ : 2p⁶ → entirely occupied valence band

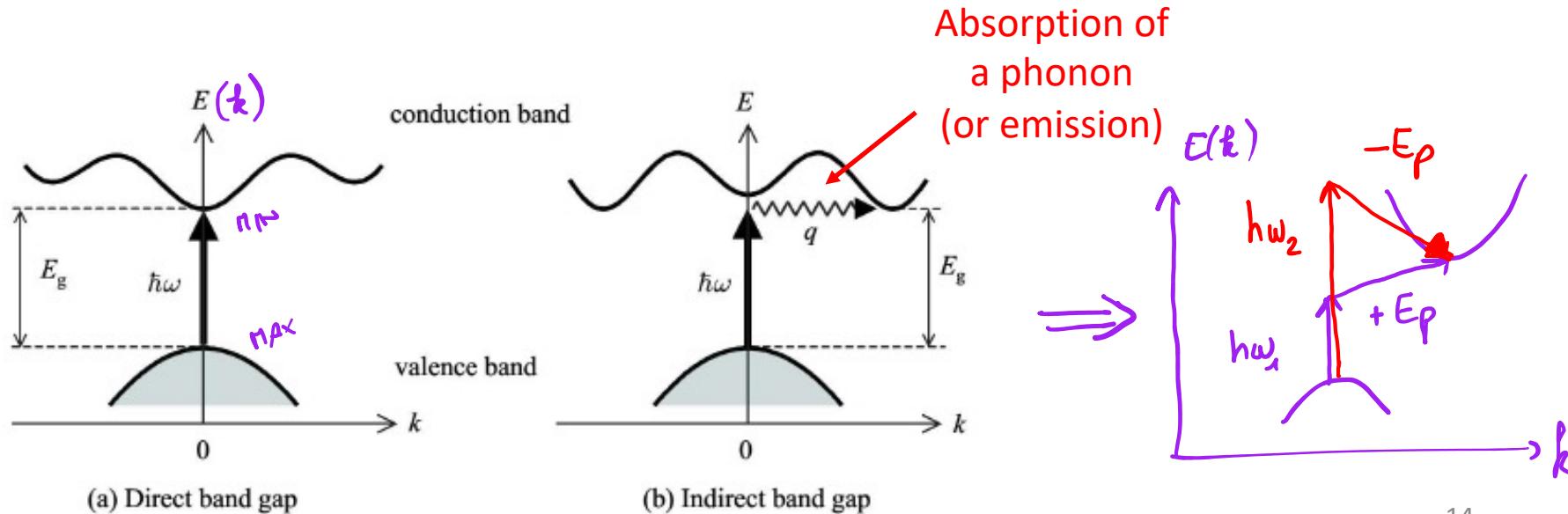
Photons of energy $\hbar\omega > \sim 3.2$ eV can give a transition 2p(O) → 3d(Ti)



The photo-conduction of the semiconductor under band-gap irradiation is due to both e_{cb}^- and h_{vb}^+

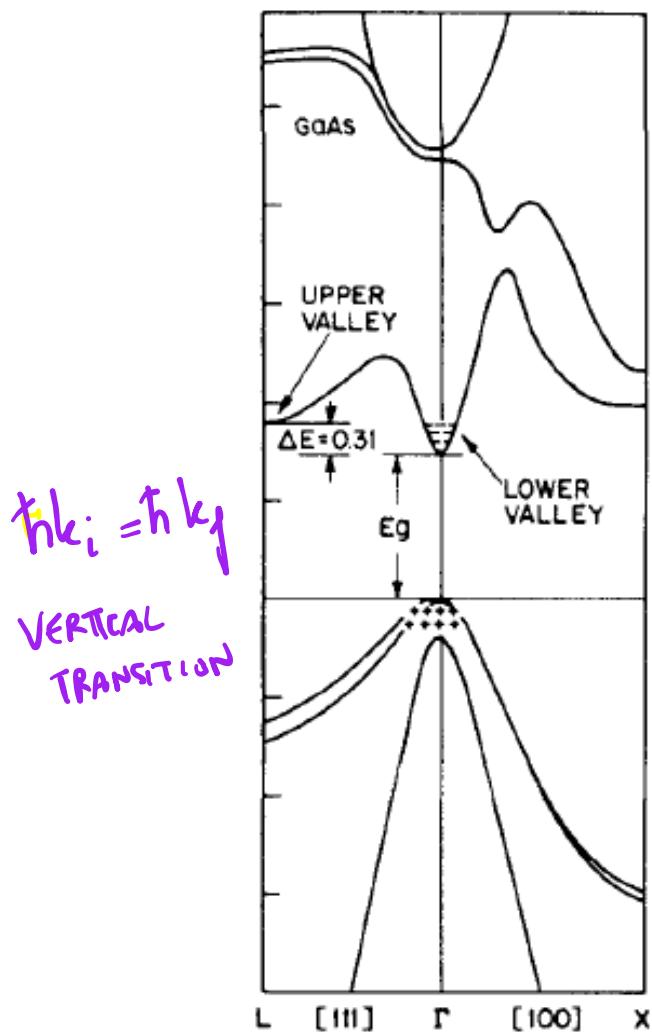
Direct and indirect band gap

- The distinction concerns the relative positions of the conduction band minimum and the valence band maximum in the Brillouin zone
- Direct gap material: both occur at the center of the Brillouin zone where $\hbar = 0$
- Indirect gap material: the CB minimum does not occur at $\hbar = 0$, but rather at some other value of \hbar which is usually at the zone edge or close to it
- Indirect band gap: It is not possible to make this jump by absorption of a photon alone, transition must involve a phonon to conserve momentum

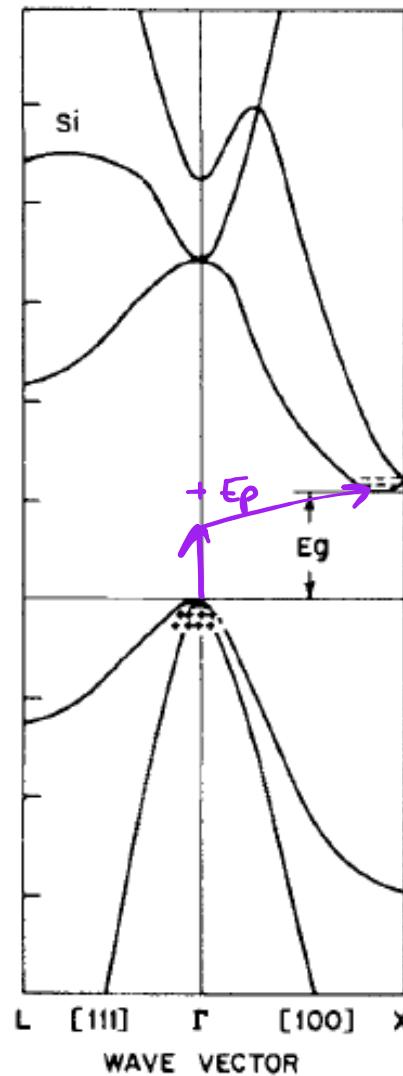


Direct and indirect band gap

GaAs: direct gap at 1.42 eV



Silicon: indirect gap at 1.12 eV



Transition rate and density of states

- Transition rate for **direct** absorption can be calculated with Fermi's golden rule:

$$W_{VB \rightarrow CB} = \frac{2\pi}{\hbar} |M|^2 \cdot g(h\nu) \longrightarrow \begin{array}{l} \text{Probability of transition/unit time} \\ \text{Density of available states} \end{array}$$

\downarrow MATRIX ELEMENT
 (related to the transition dipole moment)

- Because electronic states and the phonon modes have a continuous range of energies, one can define a density of states = number of available states:

$$\text{Number of states in the range } E \rightarrow (E + dE) = g(E)dE$$

- Knowing $g(E)$ is needed for calculating absorption and emission spectra
- Occupation changes with temperature!
- Absorption strength is usually very high because of the very large density of absorbing atoms in the solid
- This is a very different case than molecular systems! → Produce sizeable optical effects in very thin samples, good for optoelectronic devices

Optical absorption in direct SCs

- Simple method for determining direct/indirect bandgap: absorption spectroscopy
- For a **direct** band gap, the absorption coefficient α is related to the light frequency by:

$$\alpha \sim \sqrt{h\nu - E_g}$$

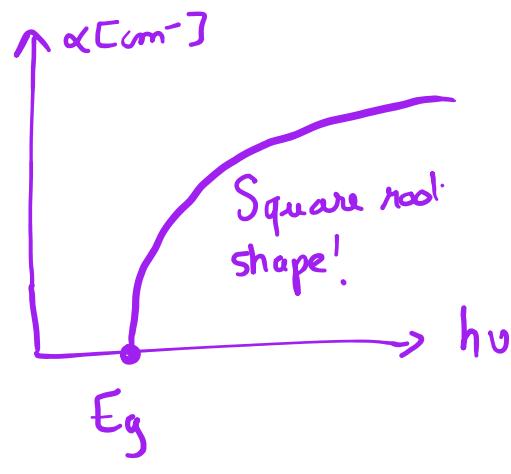
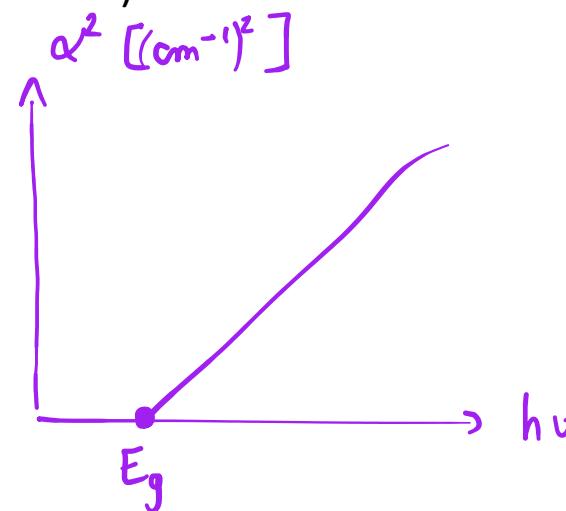
$\hookrightarrow \text{cm}^{-1}$

This approximation is only valid for
 $h\nu \sim E_g$
and near $\hbar = 0$!

Direct transitions:

- For $h\nu > E_g$, α shows a steep rise with photon energy up to 10^4 - 10^6 cm^{-1}
- For $h\nu < E_g$, $\alpha = 0$ or close to (trap states could contribute)

Plots of α and α^2 :



Optical absorption in indirect SCs

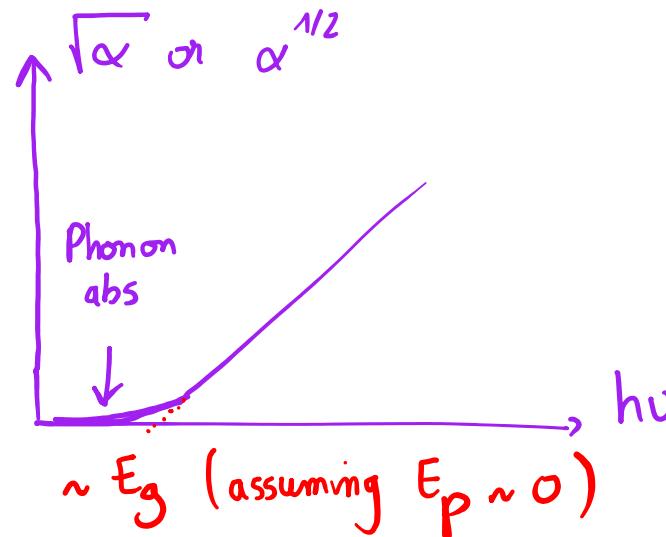
- For an indirect band gap, one needs to consider the phonon energy E_p :

$$\alpha \sim \frac{(h\nu - E_g + E_p)^2}{\exp\left(\frac{E_p}{kT}\right) - 1} + \frac{(h\nu - E_g - E_p)^2}{1 - \exp\left(-\frac{E_p}{kT}\right)}$$

BOLTZMANN FACTOR → DEPENDS ON T !

- Transitions are less probable → absorption coefficients are usually lower...

- What is the shape of α ($h\nu$) vs ($h\nu$)?

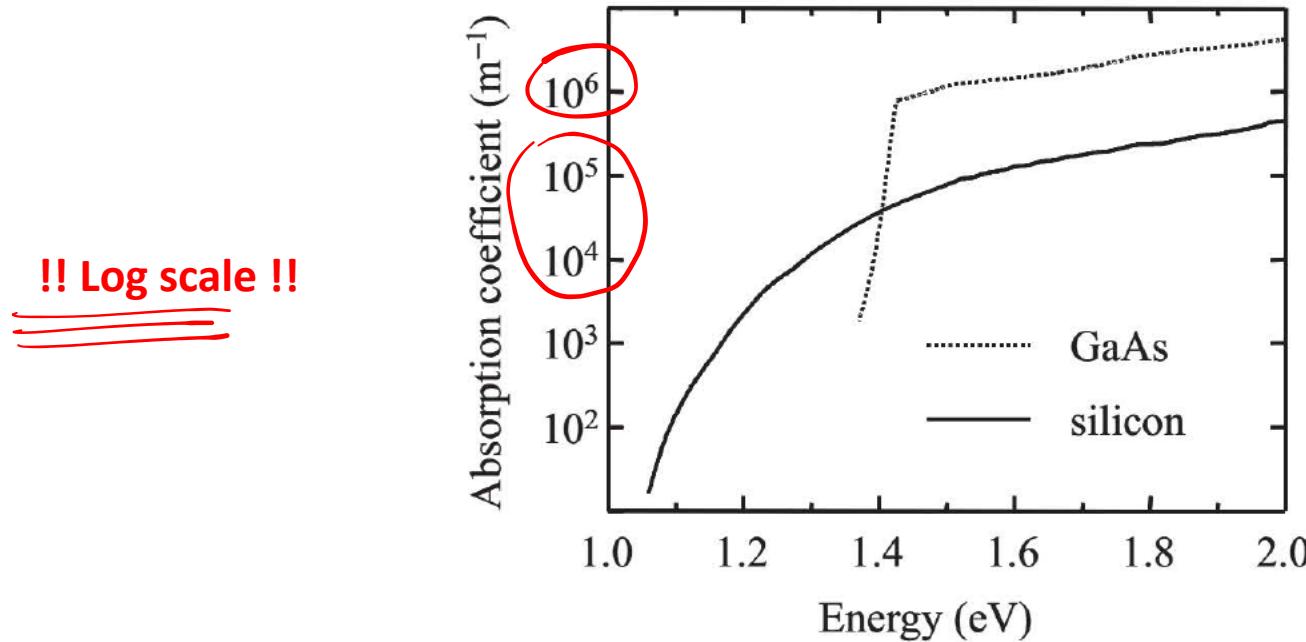


Optical absorption in indirect SCs

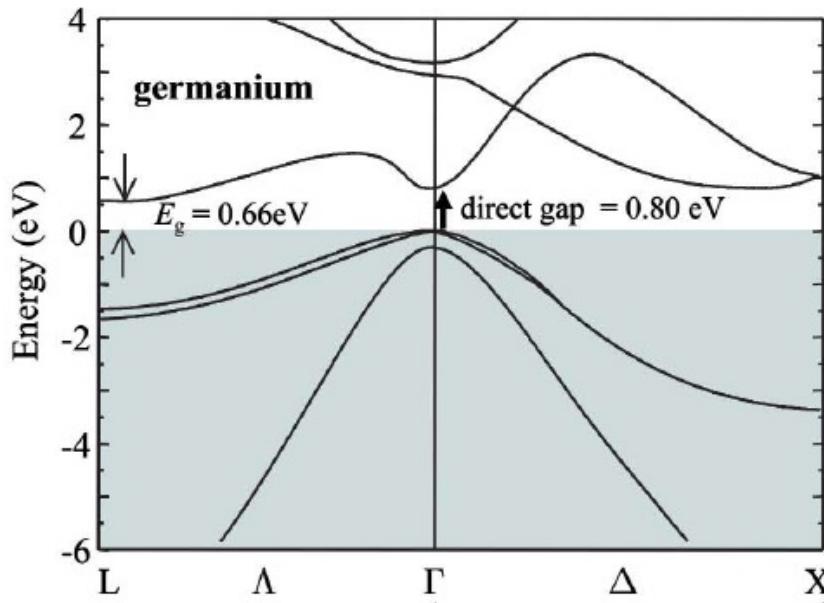
Direct vs. indirect transitions: Indirect transitions are less probable

Example: GaAs: direct gap at 1.42 eV

Silicon: indirect gap at 1.12 eV

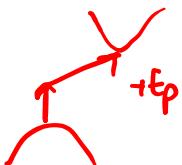


Phonons absorption/emission



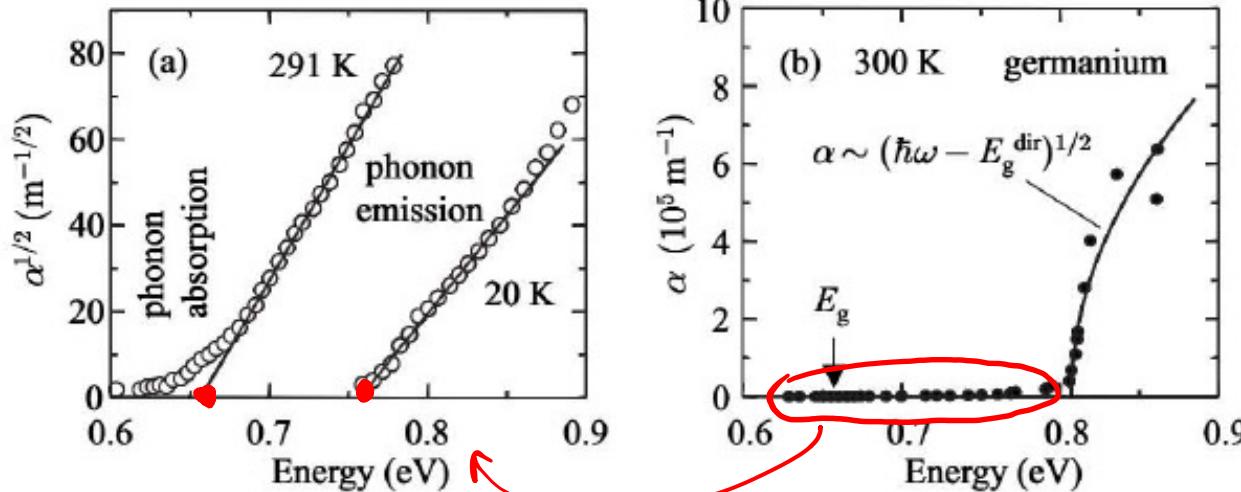
Indirect absorption
near the band gap

INDIRECT
 $\propto \sqrt{\alpha}$ vs $h\nu$



Wave vector \mathbf{k}

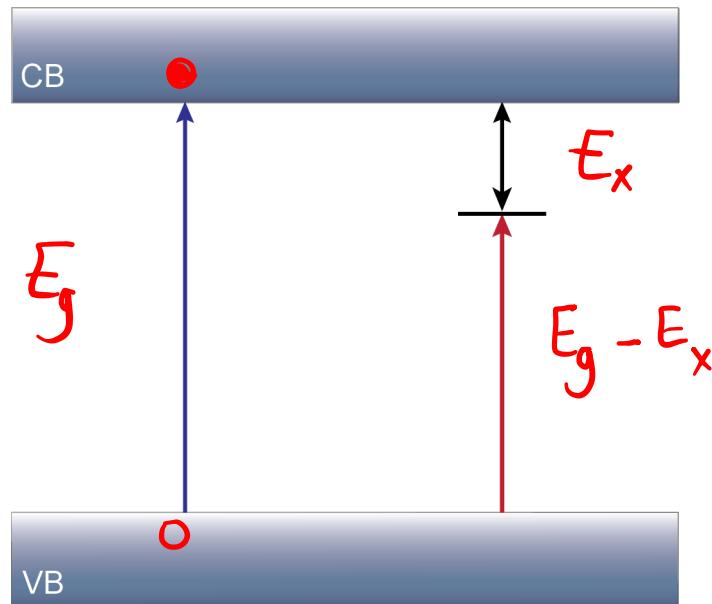
Direct absorption
at higher E



Excitonic effects

Exciton

- Electron-hole pair where charge carriers are bound together by Coulombic interaction
- ***Neutral entity*** - can move easily in a material and carries excitation energy
- Simplest picture: exciton may be understood as a small hydrogenic system



Exciton bond energy E_x [meV]

Si	14.7	CdS	29	KCl	400
Ge	4	CdSe	15	KBr	400
GaAs	4.2	BaO	56	AgCl	30
GaP	3.5	InP	4	AgBr	20

$$k_B T \approx 25 \text{ meV at RT}$$

- Stable excitons will only be formed if the attractive potential is sufficient to protect the exciton against collisions with phonons!
- In other words, $E_x > k_B T$

Wannier and Frenkel excitons

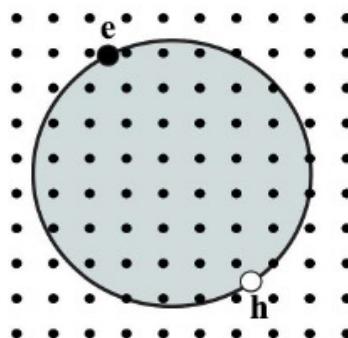
Wannier–Mott excitons: Free excitons

- Mainly observed in semiconductors
- Large radius that encompasses many atoms
- They are delocalized states that can move freely throughout the crystal
- Small binding energies due to their large radius, with typical values of around 0.01 eV
- Are observed clearly only at cryogenic temperatures in many materials

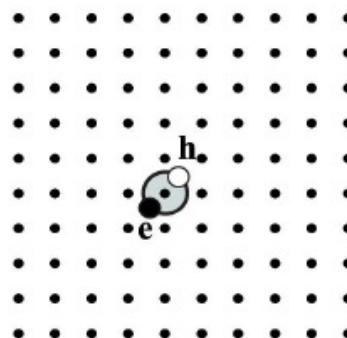
Frenkel excitons : Tightly bound excitons

- Found in insulators and molecular crystals
- Much less mobile than free excitons
- Move through the crystal by hopping from one atom site to another
- Larger binding energies of the order 0.1–1 eV, which makes them stable at RT

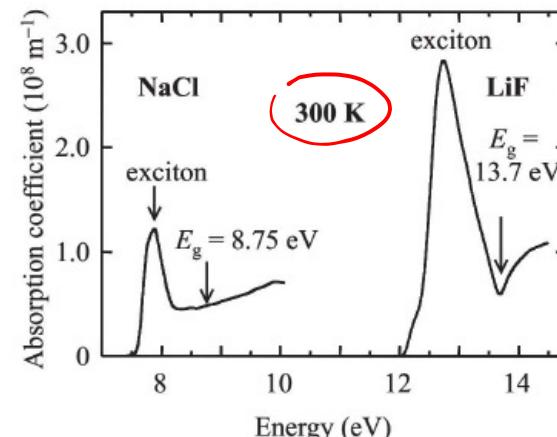
At RT, Tightly bound excitons !



(a) Free exciton

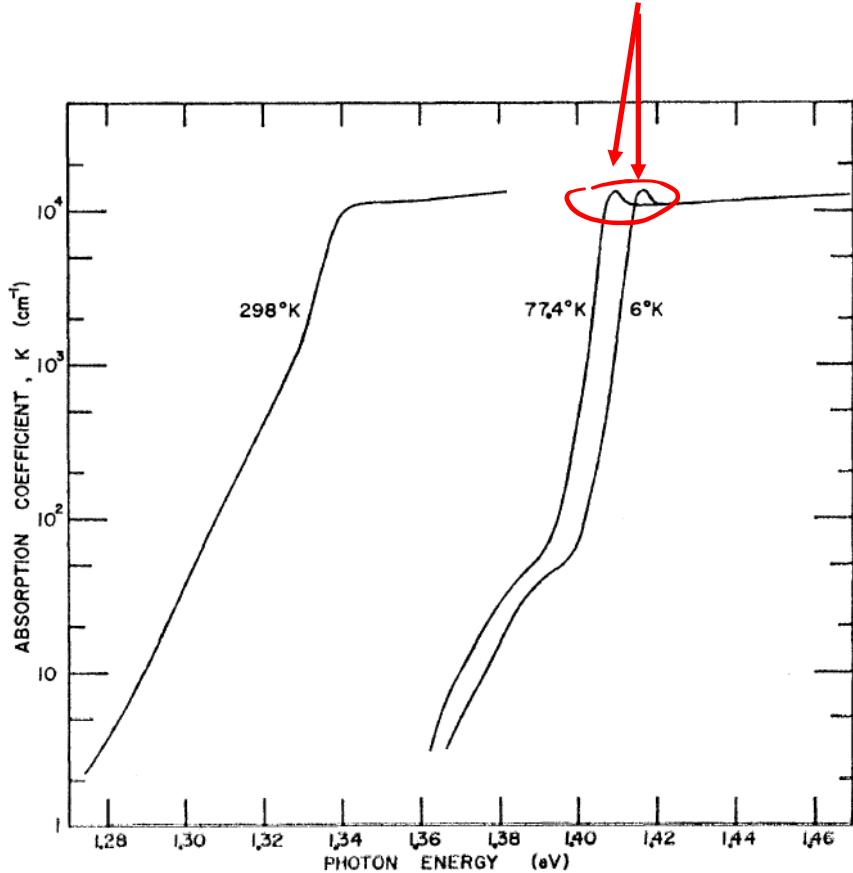
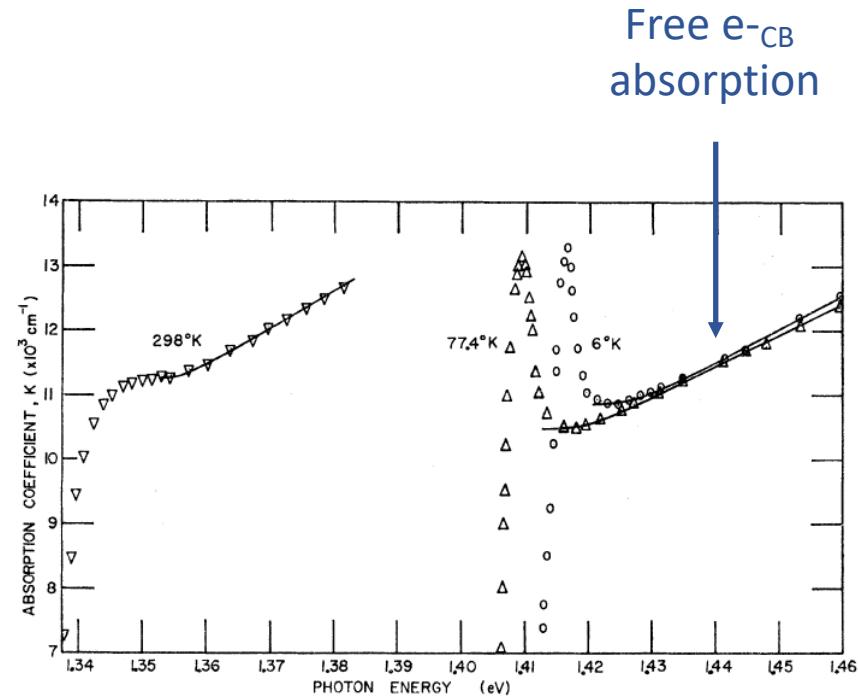


(b) Tightly bound exciton



Example of InP

Exciton absorption

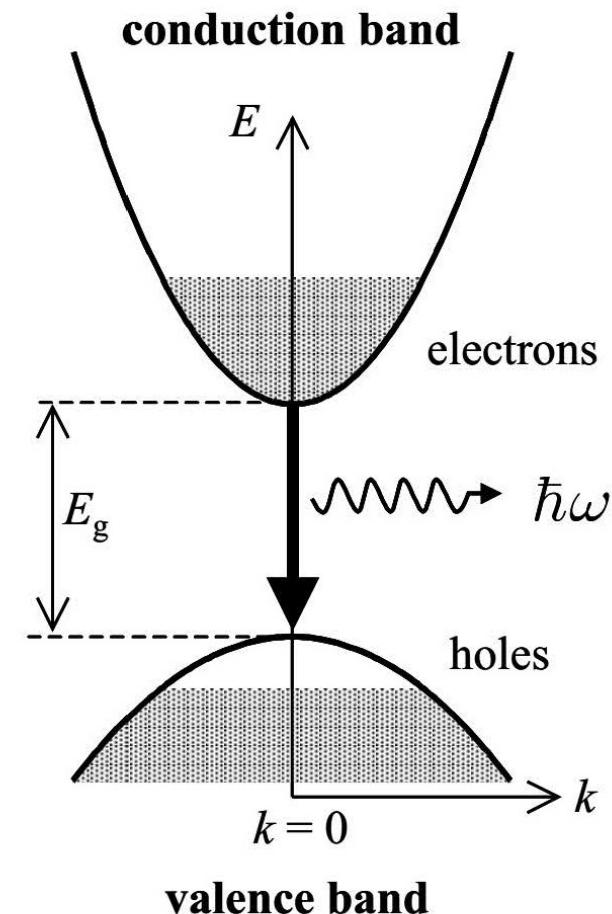
Free e_{CB} absorption

Luminescence: Direct bandgap

- Interband luminescence in a SC occurs when an electron that has been excited into the CB drops back to the VB by emission of a photon
- Simultaneously reduces the number of e_{CB} and h^+_{VB} by one
- Reverse process of interband absorption, which is equivalent to the creation of an e/h^+ pair

Photoluminescence: Re-emission of light after absorption of a photon of higher energy

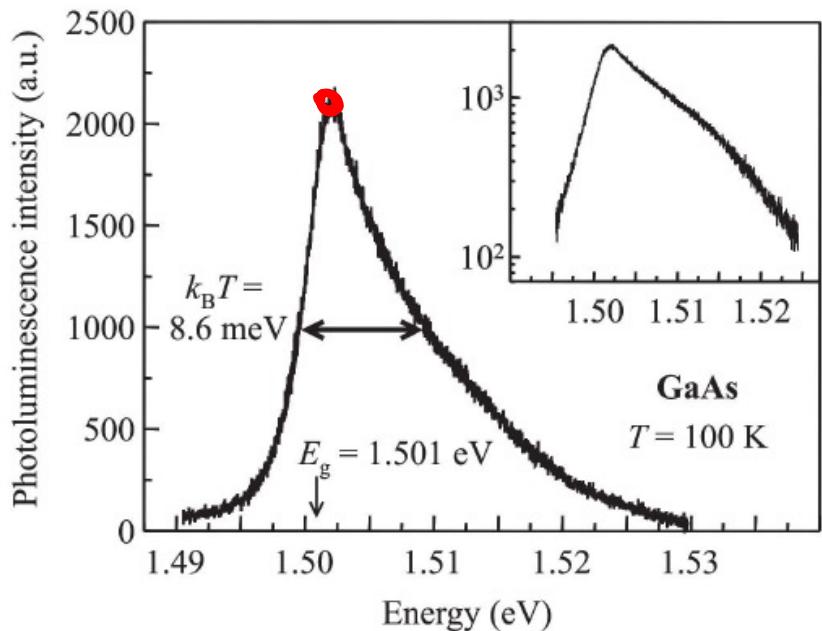
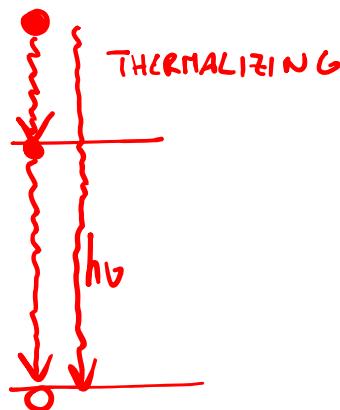
Electroluminescence: Emission of light caused by running an electrical current through the material



Direct bandgap:

Absorption is high \rightarrow luminescence is high! With short radiative lifetimes (ns)

Luminescence: Direct Bandgap

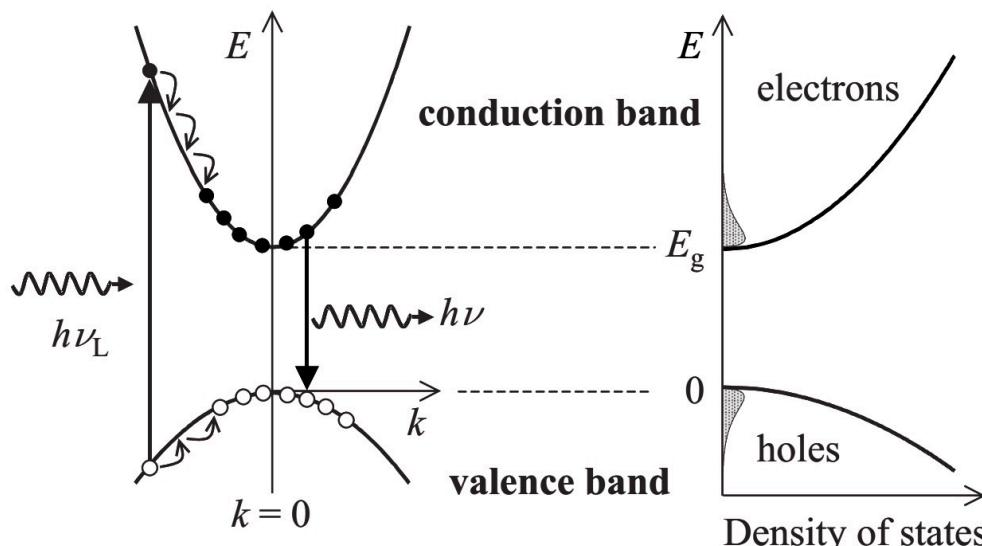


$$I(h\nu) \sim \sqrt{h\nu - E_g} \exp\left(-\frac{h\nu - E_g}{k_B T}\right)$$

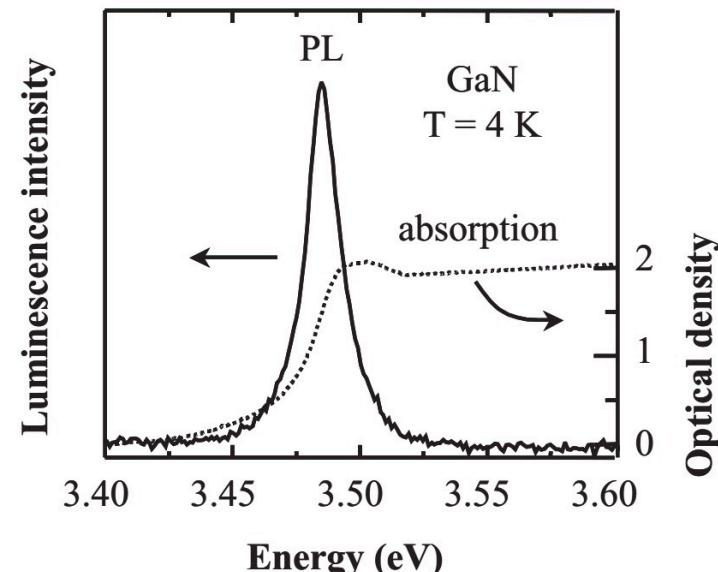
T factor

- Luminescence spectrum rises sharply at E_g and falls off exponentially
- Exponential decay due to Boltzmann factor: Describes e- and h⁺ distributions in bands
- Expect a sharply-peaked spectrum of width $\sim k_B T$ starting at E_g

Additional considerations on PL



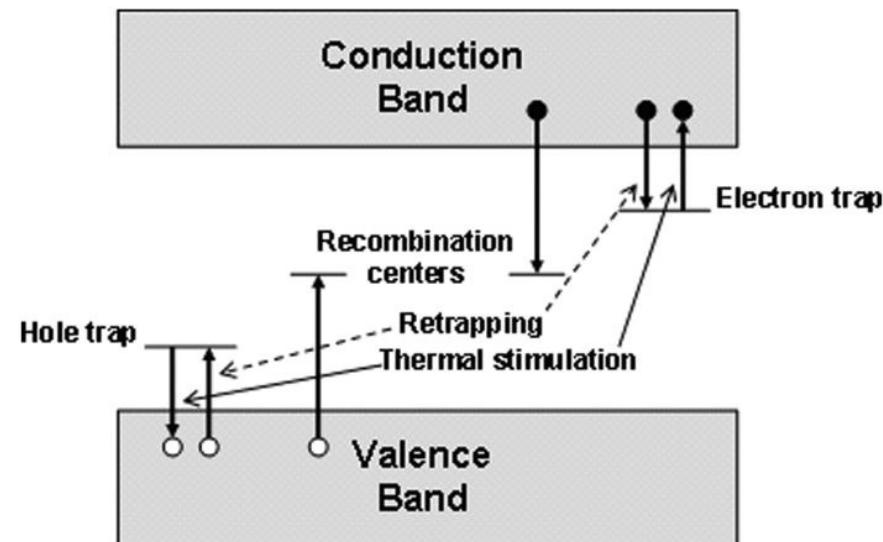
M. Fox, Optical Properties of Solids



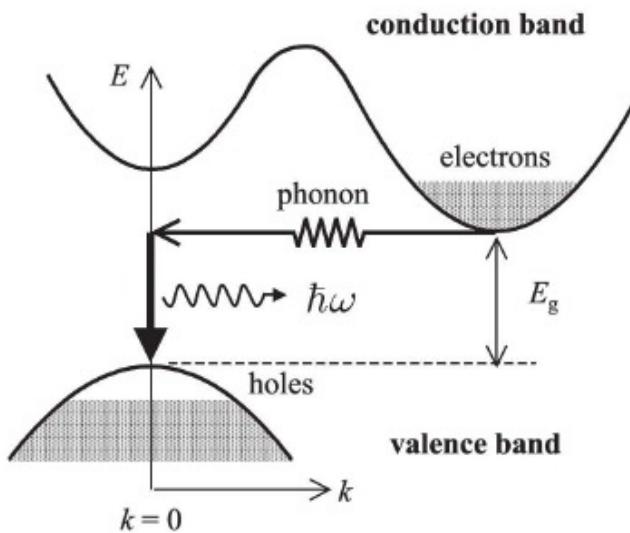
- Because of rapid relaxation of e^-/h^+ to the bottom/top of their respective bands, PL will occur close to the bandgap

→ Characteristic **narrow** shape of PL bands ≠ large absorption bands

- But... There can always be trap states!



Luminescence: Indirect bandgap



- The requirement of emitting both a phonon and a photon during the transition makes it a second-order process, with a relatively small transition probability
- Radiative lifetime is therefore much longer than for direct transitions!
- Competition with non-radiative recombination...
- Indirect gap materials are generally bad light emitters
- Two important semiconductors, crystalline silicon and germanium, have indirect band gap and are not used as light emitters...

...But they are good for separating charges!!!